$\begin{aligned} & \text { CLASS: } \\ & \text { XI } \end{aligned}$	INDIAN SCHOOL MUSCAT FIRST PERIODIC TEST	SUBJECT:
	SET - B	
QP.NO.	VALUE POINTS	SPLIT UP MARKS
1.	Inclination of the line $=120^{\circ}$ Slope of the line $=\tan 120^{\circ}=-\sqrt{ } 3$ Equation of the line: $y-2=-\sqrt{3}(x-0)$ $\sqrt{ } 3 x+y-2=0$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
2.	$\begin{aligned} & \text { Given line is } 3 \mathrm{x}+4 \mathrm{y}+\mathrm{k}=0 \\ & \left\|\frac{3 x(-4)+4 \times 2+k}{\sqrt{9+16}}\right\|=3 \\ & \Rightarrow \mathrm{k}=19 \text { or }-11 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
3.	The given lines are $x+2 y-5=0$ $3 x+y-11=0-$ \qquad (ii) Slope of line $(i)=m_{1}=\frac{-1}{2}$ Slope of line (ii) $=m_{2}=-3$ $\tan \varnothing=\left\|\frac{-3+\frac{1}{2}}{1+(-3) x \frac{-1}{2}}\right\|=1$ $\emptyset=45^{\circ}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
4.	Given line is $x-\sqrt{ } 3 y=8$ - Dividing (i) by $\sqrt{1^{2}+(-\sqrt{3})^{2}}=2$ $\begin{equation*} \frac{x}{2}-\frac{\sqrt{3}}{2} y=4- \tag{ii} \end{equation*}$ Comparing (ii) with $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$ $\operatorname{Cos} \alpha=\frac{1}{2}$ and $\sin \alpha=-\frac{\sqrt{3}}{2}$ and $p=4$ Angle $=300^{\circ}$ and perpendicular distance from the origin $=4$ units	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
5.	$\frac{x}{a}+\frac{y}{9-a}=1--------------$ (i) Line (i) passes through (2,2) $\begin{aligned} & \frac{2}{a}+\frac{2}{9-a}=1 \\ & a^{2}-9 a+18=0 \\ & a=6 \text { or } 3 \end{aligned}$ When $a=6$,eqn is $3 x+2 y-18=0$ When $a=3$, eqn is $6 x+3 y-18=0$	1 1 1 1
6.	Equation of the line $4 x-3 y-5=0-------------$ (i) Let Q be the foot of the perpendicular drawn from $P(1,-2)$ to line (i) Slope of $(i)=\frac{4}{3}$ Slope of $\mathrm{PQ}=\frac{-3}{4}$ Equation of PQ is, $3 x+4 y+5=0$ - By solving (i) and (ii) $\begin{equation*} x=\frac{1}{5} \text { and } y=\frac{-7}{5} \tag{ii} \end{equation*}$ Coordinates of the foot of the perpendicular is $\left(\frac{1}{5}, \frac{7}{5}\right)$	1 1 1 1

7.	Equation is $(2 x+y-5)+k(x+3 y+8)=0$ $(2+k) x+(1+3 k) y+(8 k-5)=0$ Slope $=\frac{-(2+k)}{(1+3 k)}$ Slope of the given line $3 x+4 y-7=0$ is $\frac{-3}{4}$ $\frac{-(2+k)}{(1+3 k)}=\frac{-3}{4}$ $K=1$ Required equation is $3 x+4 y+3=0$	1

